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Abstract

We explore the connection between outlier-robust high-dimensional statistics and
non-convex optimization in the presence of sparsity constraints, with a focus on
the fundamental tasks of robust sparse mean estimation and robust sparse PCA. We
develop novel and simple optimization formulations for these problems such that
anyapproximate stationary point of the associated optimization problem yields a
near-optimal solution for the underlying robust estimation task. As a corollary, we
obtain that any �rst-order method that ef�ciently converges to stationarity yields an
ef�cient algorithm for these tasks.1 The obtained algorithms are simple, practical,
and succeed under broader distributional assumptions compared to prior work.

1 Introduction

In several modern machine learning (ML) applications, such as ML security [BNJT10, BNL12,
SKL17, DKK+ 19a] and exploratory analysis of real datasets, e.g., in population genetics [RPW+ 02,
PLJD10, LAT+ 08, DKK+ 17], typical datasets contain a non-trivial fraction of arbitrary (or even
adversarial) outliers. Robust statistics [HRRS86, HR09] is the sub�eld of statistics aiming to design
estimators that are tolerant to aconstant fractionof outliers, independent of the dimensionality of the
data. Early work in this �eld, see, e.g., [Tuk60, Hub64, Tuk75] developed sample-ef�cient robust
estimators for various basic tasks, alas with runtime exponential in the dimension.

During the past �ve years, a line of work in computer science, starting with [DKK+ 16, LRV16],
has developed the �rstcomputationally ef�cientrobust high-dimensional estimators for a range of
tasks. This progress has led to a revival of robust statistics from an algorithmic perspective (see,
e.g., [DK19, DKK+ 21] for surveys on the topic). In this work, we focus on high-dimensional
estimation tasks in the presence of sparsity constraints. To rigorously study these problems, we need
to formally de�ne the model of data corruption. Throughout this work, we work with the following
standard contamination model.

1An implementation of our algorithms is available at https://github.com/guptashvm/Sparse-GD.
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De�nition 1.1 (Strong Contamination Model, see [DKK+ 16]). Given a parameter0 < � < 1=2 and
a distribution familyD onRd, theadversaryoperates as follows: The algorithm speci�es a number
of samplesn, andn samples are drawn from some unknownD 2 D . The adversary is allowed to
inspect the samples, remove up to�n of them and replace them with arbitrary points. This modi�ed
set ofn points is then given as input to the algorithm. We say that a set of samples is� -corruptedif it
is generated by the above process.

High-dimensional robust statistics is algorithmically challenging because the natural optimization
formulations of such tasks are typically non-convex. The recent line of work on algorithmic robust
statistics has led to a range of sophisticated algorithms. In some cases, such algorithms require solving
large convex relaxations, rendering them computationally prohibitive for large-scale problems. In
other cases, they involve a number of hyper-parameters that may require careful tuning. Motivated by
these shortcomings of known algorithms, recent work [CDGS20, ZJS20] established an intriguing
connection between high-dimensional robust estimation and non-convex optimization. The high-level
idea is quite simple: Even though typical robust statistics tasks lead to non-convex formulations, it may
still be possible to leverage the underlying structure to show that standard �rst-order methods provably
and ef�ciently reach near-optimal solutions. Indeed, [CDGS20, ZJS20] were able to prove such
statements for robust mean estimation under natural distributional assumptions. Speci�cally, these
works established that any (approximate) stationary point of a well-studied non-convex formulation
for robust mean estimation yields a near-optimal solution for the underlying robust estimation task.

In this work, we continue this line of work with a focus onsparseestimation tasks. Leveraging
sparsity in high-dimensional datasets is a fundamental problem of signi�cant practical importance.
Various formalizations of this problem have been investigated in statistics and machine learning
for at least the past two decades (see, e.g., [HTW15] for a textbook on the topic). We focus on
robust sparse mean estimationandrobust sparse PCA. Sparse mean estimation is arguably one
of the most fundamental sparse estimation tasks and is closely related to the Gaussian sequence
model [Tsy08, Joh17]. The task of sparse PCA in the spiked covariance model, initiated in [Joh01],
has been extensively investigated (see Chapter 8 of [HTW15] and references therein).

In the context of robust sparse mean estimation, we are given an� -corrupted set of samples from
a distribution with unknown mean� 2 Rd where� is k-sparse, and we want to compute a vector
b� close to� . In the context of robust sparse PCA (in the spiked covariance model), we are given
an� -corrupted set of samples from a distribution with covariance matrixI + �vv T , wherev 2 Rd

is k-sparse and the goal is to approximatev. It is worth noting that for both problems, we have
access to much fewer samples compared to the non-sparse case (roughlyO(k2 logd) instead of
( d)).
Consequently, the design and analysis of optimization formulations for robust sparse estimation
requires new ideas and techniques that signi�cantly deviate from the standard (non-sparse) case.

1.1 Our Results and Contributions

We show that standard �rst-order methods lead to robust and ef�cient algorithms for sparse mean
estimation and sparse PCA. Our main contribution is to propose novel (non-convex) formulations for
these robust estimation tasks, and to show thatapproximate stationarity suf�ces for near-optimality.
We establish landscape results showing thatanyapproximate stationary point of our objective function
yields a near-optimal solution for the underlying robust estimation task. Consequently, gradient
descent (or any other methods converging to stationarity) can solve these problems.

Our results provide new insights and techniques in designing and analyzing (non-convex) optimization
formulations of robust estimation tasks. Our formulations and structural results immediately lead
to simple and practical algorithms for robust sparse estimation. Importantly, the gradient of our
objectives can be computed ef�ciently via a small number of basic matrix operations. In addition
to their simplicity and practicality, our methods provably succeed under more general distributional
assumptions compared to prior work.

For robust sparse mean estimation and robust sparse PCA, our landscape results require deterministic
conditions on the original set of good samples. We refer to these conditions asstability conditions
(De�nitions 2.1 and 2.2, formally de�ned in Section 2). At a high level, they state that the �rst and
second moments of a set of samples are stable whenany� -fraction of the samples are removed. These
stability conditions hold with high probability for a set of clean samples drawn from natural families
of distributions (e.g., subgaussian).
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For robust sparse mean estimation, we establish the following result.

Theorem 1.2(Robust Sparse Mean Estimation). Let0 < � < � 0 for some universal constant� 0 and
let � > � . LetG? be a set ofn samples that is(k; �; � )-stable (per De�nition 2.1) w.r.t. a distribution
with unknownk-sparse mean� 2 Rd. LetS = ( X i )n

i =1 be an� -corrupted version ofG?. 2 There is
an algorithm that on inputsS, k, � , and� , runs in polynomial time and returns ak-sparse vector
b� 2 Rd such thatkb� � � k2 � O(� ).

We emphasize that a key novelty of Theorem 1.2 is that the underlying algorithm is a�rst-order
methodapplied to anovel non-convex formulationof the problem. The major advantage of our
algorithm over prior work [BDLS17, DKK+ 19b] is its simplicity, practicality, and the fact that it
seamlessly applies to a wider class of distributions on the clean data.

As we will discuss in Section 3, when the ground-truth distributionD is subgaussian with unknown
k-sparse mean� 2 Rd and identity covariance, a set ofn = e
( k2 logd=�2) samples drawn from
D is (k; �; � )-stable (De�nition 2.1) with high probability for� = O(�

p
log(1=�)) . It follows as an

immediate corollary of Theorem 1.2 that, given an� -corrupted set of samples, we can compute a
vectorb� that isO(� ) = O(�

p
log(1=�)) close to the true mean� . This sample complexity matches

the known computational-statistical lower bounds [DKS17, BB20]. More generally, one can relax
the concentration assumption on the clean data and obtain qualitatively similar error guarantees.

Next we state our main result for robust sparse PCA.

Theorem 1.3(Robust Sparse PCA). Let0 < � � 1 and0 < � < � 0 for some universal constant� 0.
Let G? be a set ofn samples that is(k; �; � )-stable (as in De�nition 2.2) w.r.t. a centered distribution
with covariance� = I + �vv > , for an unknownk-sparse unit vectorv 2 Rd. LetS = ( X i )n

i =1 be
an � -corrupted version ofG?. There is an algorithm that on inputsS, k, and� , runs in polynomial
time and returns a unit vectoru 2 Rd such that




 uu> � vv>






F = O(
p

�=� ).

Interestingly, our algorithm for robust sparse PCA is a �rst-order method applied to a simpleconvex
formulation of the problem. We view the existence of a convex formulation as an intriguing fact that,
surprisingly, was not observed in prior work.

As we will discuss in Section 4, when the ground-truth distributionD is centered subgaussian with
covariance� = I + �vv > , for an unknownk-sparse unit vectorv 2 Rd, a set ofn = e
( k2 logd=�2)
samples drawn fromD is (k; �; � )-stable (De�nition 2.2) with high probability for� = O(� log(1=�)) .
Therefore, our algorithm outputs a vector that isO(

p
� log(1=�)=� ) close to the true directionv.

The sample complexity in this case nearly matches the computational-statistical lower bound of

( k2 logd=�2) [BR13] which holds even without corruptions. While the error guarantee of our
algorithm is slightly worse compared to prior work [BDLS17, DKK+ 19b] for Gaussian data (we get
O(

p
�=� ) rather thanO(�=� )), we note that our algorithm works for a broader family of distributions.

Prior Work on Robust Sparse Estimation. We provide a detailed summary of prior work for
comparison. [BDLS17] obtained the �rst sample-ef�cient and polynomial-time algorithms for robust
sparse mean estimation and robust sparse PCA. These algorithms succeed for Gaussian inliers and
inherently use the ellipsoid method. The separation oracle required for the ellipsoid algorithm
turns out to be another convex program — corresponding to an SDP to solve sparse PCA. As a
consequence, the running time of these algorithms, while polynomially bounded, is impractically
high. [LLC19] proposed an algorithm for robust sparse mean estimation via iterative trimmed hard
thresholding, which can only tolerate asub-constantfraction of corruptions. [DKK+ 19b] gave
iterative spectral robust algorithms for sparse mean estimation and sparse PCA. These algorithms are
still quite complex and are only shown to succeed under Gaussian inliers.

1.2 Overview of Our Approach

In this section, we give an overview of our approach for robust sparse mean estimation. At a very high
level, we assign a nonnegative weight to each data point and try to �nd a good set of(1 � � )n samples.
The constraint on the weight vector is that it represents at least a (fractional) set of(1 � � )-portion of
the input dataset. Formally, givenn datapoints(X i )n

i =1 , the goal is to �nd a weight vectorw 2 Rn

2For two sets of samplesS andT , we sayS is an� -corrupted version ofT if jSj = jT j andjS n T j � � jSj.
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such that� w =
P

i wi X i is close to the true mean� . The constraint onw is that it belongs to

� n;� =
n

w 2 Rn : kwk1 = 1 and0 � wi � 1
(1 � � )n 8i

o
;

which is the convex hull of all uniform distributions over subsetsS � [n] of sizejSj = (1 � � )n.

Let � w =
P

i wi (X i � � w )(X i � � w )> denote the weighted empirical covariance matrix. It is
well-known that if one can �ndw 2 � n;� that minimizes the weighted empirical variancev> � w v for
all k-sparse unit vectorsv, then� w must be close to� . Unfortunately, it is NP-Hard to �nd the sparse
directionv with the largest variance. To get around this issue, [BDLS17] considered the following
convex relaxation, minimizing the variance for convex combinations of sparse directions:

min
w

max
tr( A )=1 ;

P
ij jA ij j� k;A � 0

(A � � w ) : (1)

Givenw, the optimalA can be found using semide�nite programming (SDP). [ZJS20] observed that
any stationary pointw of (1) gives a good solution for robust sparse mean estimation. However,
solving(1) requires convex programming to compute the gradient in each iteration. As explained in
the proceeding discussion, our approach circumvents this shortcoming, leading to a formulation for
which each gradient can be computedusing only basic matrix operations.

In this work, we propose and analyze the following optimization formulation:

min
w

f (w) = k� w � I kF;k;k subject tow 2 � n;� ;

wherekAkF;k;k is the Frobenius norm of thek2 entries ofA with largest magnitude, with the
additional constraint that thesek2 entries are chosen fromk rows withk entries in each row.

We prove that any stationary point off (w) yields a good solution for robust sparse mean estimation.
Here we provide a brief overview of our proof (see Section 3 for more details). Given a weight vector
w, we show that ifw is not a good solution, then moving towardw? (the weight vector corresponding
to the uniform distribution on the clean input samples) will decrease the objective value. Formally,
we will show that, for any0 < � < 1,

� (1 � � )w+ �w ? = (1 � � )� w + � � w ? + � (1 � � )( � w � � w ? )( � w � � w ? )> :

We can then takek � kF;k;k norm on both sides (after subtractingI ) and show that the third term can
be essentially ignored. If the third term were not there, we would have

f ((1 � � )w + �w ?) =



 � (1 � � )w+ �w ? � I






F;k;k

� (1 � � )k� w � I kF;k;k + � k� w ? � I kF;k;k = (1 � � )f (w) + �f (w?) :

Therefore, ifw is a bad solution withf (w) much larger thanf (w?), thenw cannot be a stationary
point becausef decreases when we move fromw to (1 � � )w + �w ?.

Remark 1.4. The technical overview for robust sparse PCA follows a similar high-level approach,
but is somewhat more technical. It is deferred to Section 4.

Roadmap. In Section 2, we introduce basic notations and the deterministic stability conditions
that we require on the good samples. We present our algorithms and analysis for robust sparse mean
estimation in Section 3 and robust sparse PCA in Section 4. In Section 5, we evaluate our algorithm
on synthetic datasets and show that it achieves good statistical accuracy under various noise models.

2 Preliminaries and Background

Notation. For a positive integern, let [n] = f 1; : : : ; ng. For a vectorv, we usekvk0, kvk1, kvk2,
andkvk1 for the number of non-zeros, the`1, `2, and`1 norm of v respectively. LetI be the
identity matrix. For a matrixA, we usekAk2, kAkF , tr( A) for the spectral norm, Frobenius norm,
and trace ofA respectively. For two vectorsx; y, let x> y denote their inner product. For two matrices
A; B , we useA � B = tr( A> B ) for their entrywise inner product. A matrixA is said to be positive
semide�nite (PSD) ifx> Ax � 0 for all x. We writeA � B iff (B � A) is PSD.

4



For a vectorw 2 Rn , let diag(w) 2 Rn � n denote a diagonal matrix withw on the diagonal. For a
matrix A 2 Rn � n , let diag(A) 2 Rn denote a column vector with the diagonal ofA. For a vector
v 2 Rd and a setS � [d], we writevS 2 Rd for a vector that is equal tov on S and zero everywhere
else. Similarly, for a matrixA 2 Rd� d and a setS � ([d] � [d]), we writeAS for a matrix that is
equal toA onS and zero everywhere else.

For a vectorv, we de�nekvk2;k = max jSj= k kvSk2 to be the maximum̀2-norm of anyk entries of
v. For a matrixA, we de�nekAkF;k 2 to be the maximum Frobenius norm of anyk2 entries ofA.
Moreover, we de�nekAkF;k;k to be the maximum Frobenius norm of anyk2 entries with the extra
requirement that these entries must be chosen fromk rows withk entries in each row. Formally,

kAkF;k 2 = max
jQ j= k 2

kAQ kF and kAk2
F;k;k = max

jSj= k

P

i 2 S
kA i k

2
2;k whereA i is i -th row ofA : (2)

Sample Reweighting Framework. We usen for the number of samples,d for the dimension,
and� for the fraction of corrupted samples. For sparse estimation, we usek for the sparsity of the
ground-truth parameters. We useG? for the original set ofn good samples. We useS = G [ B
for the input samples after the adversary replaced� -fraction of G?, whereG � G? is the set of
remaining good samples andB is the set of bad samples (outliers) added by the adversary. Note that
jGj = (1 � � )n andjB j = �n .

Given n samplesX 1; : : : ; X n , we writeX 2 Rd� n as the sample matrix where thei -th column
is X i . For a weight vectorw 2 Rn , we use� w = Xw =

P
i wi X i for the weighted empirical

mean and� w = X diag(w)X � � w � >
w =

P
i wi (X i � � w )(X i � � w )> for the weighted empirical

covariance. Let� n;� be the convex hull of all uniform distributions over subsetsS � [n] of size
jSj = (1 � � )n: � n;� = f w 2 Rn : kwk1 = 1 and0 � wi � 1

(1 � � )n 8ig, In other words, every
w 2 � n;� corresponds to a fractional set of(1 � � )n samples. We usew? to denote the uniform
distribution onG (the remaining good samples inS).

Deterministic Stability Conditions. For robust sparse mean estimation and robust sparse PCA, we
require the following conditions respectively.
De�nition 2.1 (Stability Conditions for Sparse Mean). A set ofn samplesG? = ( X i )n

i =1 is said to
be(k; �; � )-stable (w.r.t. a distribution with mean� ) iff for any weight vectorw 2 � n; 2� , we have
k� w � � k2;k � � andk� w � I kF;k;k � � 2=�, where� w and� w are the weighted empirical mean
and covariance matrix respectively, and thek�kF;k;k norm is de�ned in Equation(2).

De�nition 2.2 (Stability Conditions for Sparse PCA). A set ofn samplesG? = ( X i )n
i =1 is (k; �; � )-

stable (w.r.t. a centered distribution with covarianceI + �vv > ) iff for any weight vectorw 2 � n; 2� ,


 M w � (I + �vv > )






F; 2k 2 � � ; whereM w =
P

i wi X i X >
i and thek�kF; 2k 2 norm is de�ned in

Equation(2).

First-Order Stationary Points. We give a formal de�nition of the notion of (approximate) �rst-
order stationary point that we use in this paper.
De�nition 2.3 (Approximate Stationary Points). Fix a convex setK and a differentiable functionf .
For 
 � 0, we say thatx 2 K is a 
 -stationary point off iff the following condition holds: For any
unit vectoru wherex + �u 2 K for some� > 0, we haveu> r f (x) � � 
 .

We note that the objective functions studied in this paper are not everywhere differentiable. This
is because, taking thek�kF;k;k norm as an example, there can be ties in choosing the largestk2

entries. When the functionf is not differentiable, we user f informally to denote an element of
the sub-differential. We will show in Appendix C that, whilef is not differentiable, it does have a
nonempty subdifferential, as it can be written as the pointwise maximum of differentiable functions.

3 Robust Sparse Mean Estimation

In this section, we present our non-convex approach for robust sparse mean estimation. We will
optimize the following objective, wherek�kF;k;k is de�ned in Equation (2):

min
w

f (w) = k� w � I kF;k;k subject tow 2 � n;� : (3)
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We will show that the objective function(3) has no bad stationary points (Theorem 3.1). In other
words,every�rst-order stationary point off yields a good solution for robust sparse mean estimation.

Our algorithm is stated in Algorithm 1. As a consequence of our landscape result (Theorem 3.1), we
know that Algorithm 1 worksno matter howwe �nd a stationary point off (because any stationary
point works), so we intentionally did not specify how to �nd such a point. As a simple illustration,
we show that (projected) gradient descent can be used to minimizef . The convergence analysis and
iteration complexity are provided in Appendix C.

Algorithm 1: Robust sparse mean estimation.

Input: k > 0, 0 < � < � 0, and an� -corrupted set of samples(X i )n
i =1 drawn from a distribution

with k-sparse mean� . 3

Output: a vectorb� that is close to� .
1: Find a �rst-order stationary pointw 2 � n;� of the objectiveminw f (w) = k� w � I kF;k;k .
2: Returnb� = ( � w )Q whereQ is a set ofk entries of� w with largest magnitude.

Formally, we �rst prove that Algorithm 1 can output a vectorb� 2 Rd that is close to� in k�k2;k norm,
as long as the good samples satis�es the stability condition in De�nition 2.1.
Theorem 3.1. Fix k > 0, 0 < � < � 0, and� > � . LetG? be a set ofn samples that is(k; �; � )-stable
(as in De�nition 2.1) w.r.t. a distribution with unknownk-sparse mean� 2 Rd. LetS = ( X i )n

i =1 be
an � -corrupted version ofG?. Let f (w) = k� w � I kF;k;k . Let 
 = O(n1=2� 2� � 3=2). Then, for any
w 2 � n;� that is a
 -stationary point off (w), we havek� w � � k2;k = O(� ).

Once we have a vector� w that isO(� )-close to� in k�k2;k norm, we can guarantee that a truncated
version of� w (the outputb� of Algorithm 1) isO(� )-close to� in the`2-norm:
Lemma 3.2. Fix two vectorsx; y with kxk0 � k andkx � yk2;k � � . Letz be a vector that keeps
thek entries ofy with largest absolute values and sets the rest to0. We havekx � zk2 �

p
5� .

Theorem 1.2 follows immediately from Theorem 3.1 and Lemma 3.2.

We can apply Theorem 1.2 to get an end-to-end result for subgaussian distributions. We show that the
required stability conditions are satis�ed with a small number of samples.
Lemma 3.3. Fix k > 0 and0 < � < � 0. LetG? be a set ofn samples that are drawn i.i.d. from a
subgaussian distribution with mean� and covarianceI . If n = 
( k2 logd=�2), then with probability
at least1 � exp(� 
( k2 logd)) , G? is (k; �; � )-stable (as in De�nition 2.1) for� = O(� log(1=�)) .

Combining Theorem 1.2 and Lemma 3.3, we know that given an� -corrupted set ofO(k2 logd=�2)
samples drawn from a subgaussian distribution withk-sparse mean� , the output of Algorithm 1 is
O(�

p
log(1=�)) -close to� in `2-norm.

In the rest of this section, we will prove Theorem 3.1. Omitted proofs in this section are in Appendix A.

We start with some intuition on why we choose our objective function(3). We would like to design
f (w) = g(� w � I ) to satisfy the following properties:

1. g(� w � I ) is an upper bound onv> (� w � I )v for all k-sparse unit vectorsv 2 Rd. This way, a
small objective value implies thatk� w � � k2;k is small.

2. g(� w ? � I ) is small forw? (the uniform distribution onG). This guarantees that a goodw exists.
3. Triangle inequality ong. This allows us to upper bound the objective value when we movew

towardw? by the sum ofg(�) of each term on the right-hand side:

� (1 � � )w+ �w ? � I = (1 � � )(� w � I ) + � (� w ? � I ) + � (1 � � )( � w � � w ? )( � w � � w ? )> :

4. g(uu> ) is close tog(vv> ) wherev keeps only thek largest entries ofu. We want to approximate
� in k�k2;k norm, so intuitivelyg(� w � I ) should depend only on the largestk entries of(� w � � ).

3Without loss of generality we can assume that� is given to the algorithm. This is because we can run a
binary search to determine� : if our guess of� is too small, then the algorithm will output aw whose objective
valuef (w) is much larger than it should be.
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Our choice off (w) = g(� w � I ) = k� � I kF;k;k is motivated by (and satis�es) all these properties.

Lemma 3.4. Fix A 2 Rd� d. We have
�
�v> Av

�
� � k AkF;k;k for anyk-sparse unit vectorv 2 Rd.

Lemma 3.5. For any vectorv 2 Rd,



 vv>






F;k;k = kvk2
2;k .

We now continue to present key technical lemmas for proving our main structural result (Theorem 3.1).
Lemma 3.6 gives the weighted empirical covariance for a convex combination of two weight vectors.
Lemma 3.6. Fix n samplesX 1; : : : ; X n 2 Rd. Letw; bw 2 Rn be two non-negative weight vectors
with kwk1 = k bwk1 = 1 . For any�; � � 0 with � + � = 1 , lettingw = � w + � bw, we have

� w = � � w + � � bw + �� (� w � � bw )( � w � � bw )> :

Proof. Becausew = � w + � bw and� w is linear inw, we have� w = �� w + �� bw . The lemma
follows from the following calculations:

� w =
X

i

wi X i X >
i � � w � >

w =
X

i

� wi X i X >
i � �� w � >

w +
X

i

� bwi X i X >
i � �� bw � >

bw

+ �� w � >
w + �� bw � >

bw � (�� w + �� bw )( �� w + �� bw )>

= � � w + � � bw + �� (� w � � bw )( � w � � bw )> :

The last step uses� � � 2 = � � � 2 = �� as� + � = 1 .

Let w? denote the uniform distribution onG, i.e.,w?
i = 1

(1 � � )n if i 2 G andw?
i = 0 otherwise. By

Lemma 3.6 for anyw, if we move towardw?, we have

� (1 � � )w+ �w ? = (1 � � )� w + � � w ? + � (1 � � )( � w � � w ? )( � w � � w ? )> :

We will show that we can essentially ignore the last rank-one term using Lemma 3.7.

Lemma 3.7. Let G? be a(k; �; � )-stable set of samples with respect to the ground-truth distribution
with 0 < � � � . LetS be an� -corrupted version ofG?. Then, we have




 (� w � � w? )( � w � � w? )>






F;k;k � 4�
�

k� w � I kF;k;k + O(� 2=�)
�

:

We are now ready to prove our main result (Theorem 3.1).

Proof of Theorem 3.1.Fix any weight vectorw 2 � n;� . We will show that ifw is a bad solution,
thenf (w) decreases ifw moves towardw?, sow cannot be a stationary point.

Let c1 be the constant inO(�) in Lemma 3.7. By Lemma 3.7, ifk� w � � k2;k � c2� for a suf�ciently

large constantc2, thenk� w � I kF;k;k � ( c2
2
4 � c1) � 2

� = 
( � 2

� ).

By Lemma 3.6,� (1 � � )w+ �w ? � I = (1 � � )(� w � I )+ � (� w ? � I )+ � (1� � )( � w � � w ? )( � w � � w ? )> :

Using the triangle inequality fork�kF;k;k , we have



 � (1 � � )w+ �w ? � I






F;k;k
� (1 � � )k� w � I kF;k;k

+ � k� w ? � I kF;k;k + � (1 � � )



 (� w � � w ? )( � w � � w ? )>






F;k;k :

We know thatk� w ? � I kF;k;k � � 2

� by the stability condition in De�nition 2.1. By Lemma 3.7 and
k� w � I kF;k;k = 
( � 2=�), we can show that for all0 < � < 1,

f ((1 � � )w + �w ?) =



 � (1 � � )w+ �w ? � I






F;k;k

� (1 � � )k� w � I kF;k;k + �� 2

� + 4 ��
�

k� w � I kF;k;k + O( � 2

� )
�

� (1 � � + 4 �� )k� w � I kF;k;k + (4 c1 + 1) �� 2

�

� (1 � �
2 )k� w � I kF;k;k = (1 � �

2 )f (w) :

(4)
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The last step uses( 1
2 � 4� ) k� w � I k2 � (4c1 + 1) � 2

� which holds if� � 1=10andc2
2 � 164c1 + 40.

It follows immediately thatw cannot be a stationary point. Letu = w ? � w
kw ? � wk2

andh = � kw? � wk2.

We havew + hu = (1 � � )w + �w ? 2 � n;� because� n;� is convex. Sincekw? � wk2 = O(
p

�=n),

u> r f (w) = lim
h! 0

f (w+ hu ) � f (w )
h � lim

� ! 0

� ( �= 2) f (w )
� kw ? � wk2

� � 
( � 2 =� )
kw ? � wk2

� � 
( n1=2� 2� � 3=2) :

By De�nition 2.3, we knoww cannot be a
 -stationary point off for some
 = O(n1=2� 2� � 3=2).

4 Robust Sparse PCA

We consider a spiked covariance model for sparse PCA. In this model, there is a directionv 2 Rd

with at mostk nonzero entries. The good samples are drawn from a ground-truth distribution with
covariance� = I + �vv > , where� > 0 is a parameter that intuitively measures the strength of the
signal. We consider the more interesting case when� � 1 (if � is larger the problem becomes easier).

To solve the sparse PCA problem, we consider the following optimization problem, whereM w =P
i wi X i X >

i andkAkF; 2k 2 = max jQ j=2 k 2 kAQ kF :

min
w

f (w) = kM w � I kF; 2k 2 subject tow 2 � n;� : (5)

The objective function minimizes the Frobenius norm of the largest2k2 entries of a reweighted
second-moment matrixM w . Note thatf (w) is actually convex inw, because the matrixM w is linear
in w and thek�kF; 2k 2 norm is convex.

Let R be the support ofvv> . Intuitively, thek2 entries inR could be large due to spiked covariance.
By minimizing the norm of the largest2k2 entries, we hope to make the entries outside ofR very
small. Our algorithm is given in Algorithm 2.

Algorithm 2: Robust sparse PCA.

Input: k > 0, 0 < � < � 0, and an� -corrupted set of samples(X i )n
i =1 drawn from a distribution

with covarianceI + �vv > for ak-sparse unit vectorv.
Output: a vectoru that is close tov.
1: Find a �rst-order stationary pointw 2 � n;� of the objectiveminw f (w) = kM w � I kF; 2k 2 .
2: Let A = M w � I . Let Q be thek2 entries ofA with largest magnitude.
3: Returnu = the top eigenvector of(AQ + A>

Q ).

Theorem 4.1. Let0 < � � 1, 0 < � < � 0, and� > � . LetG? be a set ofn samples that is(k; �; � )-
stable (as in De�nition 2.2) w.r.t. a centered distribution with covarianceI + �vv > for an unknown
k-sparse unit vectorv 2 Rd. LetS = ( X i )n

i =1 be an� -corrupted version ofG?. Algorithm 2 outputs
a vectoru such that




 uu> � vv>






F = O(
p

�=� ).

Theorem 1.3 is an immediate corollary of Theorem 4.1.

We can apply Theorem 4.1 to get an end-to-end result for subgaussian distributions. Algorithm 2
requires the stability conditions (De�nition 2.2) of the original good samplesG?. We show that these
conditions are satis�ed with a small number of samples.
Lemma 4.2. Let 0 < � � 1 and0 < � < � 0. LetD be a centered subgaussian distribution with
covarianceI + �vv > for a k-sparse unit vectorv 2 Rd. Let G? be a set ofn = 
( k2 logd=�2)
samples drawn fromD. Then then with probability at least1 � exp(� 
( k2 logd)) , G? is (k; �; � )-
stable (as in De�nition 2.2) w.r.t.D for � = O(� log(1=�)) .

Combining Theorem 4.1 and Lemma 4.2, given as input an� -corrupted set ofn = e
( k2 logd=�2)
samples drawn from a centered subgaussian distribution with covarianceI + �vv > , Algorithm 2
returns a vectoru with




 uu> � vv>






F = O(
p

� log(1=�)=� ).

We defer the proofs of Lemma 4.2 and Theorem 4.1 to Appendix B and give an overview of the proof
of Theorem 4.1.

8






